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We recently reported the development of a receptor-modeling concept based on 5D-QSAR
(quantitative structure-activity relationships) and which explicitly allows for the simulation
of induced fit. In this account, we report its utilization toward the design of novel compounds
able to inhibit the chemokine receptor-3 (CCR3). The study was based on a total of 141
compounds, representing four different substance classes. Using the Quasar software, we built
two receptor surrogates that yielded a cross-validated r2 value of 0.950/0.861 and a predictive
r2 of 0.879/0.798, respectively. The model was then employed to predict the activity of 58
hypothetical compounds featuring two variation patterns: lipophilic substitutions and am-
phiphilic H-bond acceptors. Eleven of the proposed ligands show a calculated binding affinity
lower than any compound within the training set; the most potent candidate molecule is
expected to bind at an IC50 of 0.3 nM.

Introduction

Chemokinesslow molecular weight (8-12 kDa) chemo-
tactic cytokinessare structurally related proteins that
participate in the activation, proliferation, and dif-
ferentiation of leukocytes and play a key role in the
control of basal leukocyte trafficking and recruitment
of leukocytes during inflammation. During inflamma-
tory processes, chemokines act via chemoattraction and
activation of leukocytes. In response to certain stimuli
or insult to the immune system, chemokines are se-
creted by proinflammatory cells, leukocytes, or endo-
thelial cells to recruit new leukocytes from the circula-
tion across the lumen and into the tissue.1-7 Chemo-
kines are classified according to the relative position of
the first cysteine found in the primary amino acid
sequence. In CXC (R-chemokines), the first pair of
cysteines is separated by a single amino acid; CC (â-
chemokines) feature adjacent cysteines, and in the
CX3C (δ-chemokines), the first pair is separated by
three amino acids. C (γ-chemokines) contain only a
single cysteine in the homologous position. Chemokines
exert their functions through the selective binding to
one or more G-protein-coupled receptor (GPCR) differ-
ently expressed on leukocytes. More recent results
suggested an important role for chemokines in a variety
of pathophysiological processes including acute and
chronic inflammation, infectious diseases, and modula-
tion of angiogenesis and fibrosis.1

In asthma, airway mast cells eosinophils and CD4+

Th2-type lymphocytes appear to be the major effector
cells in the chronic inflammation that underlies the
clinical manifestation of the disease.8 Little details are
known about the cellular and molecular mechanisms
involved in the recruitment of these cells from the
circulation, but two fundamental processes are generally
accepted to be involved: leukocyte adhesion involving
selectin-mediated tethering and transendothelial migra-
tion of the leukocyte into the surrounding tissue up a
chemotactic gradient.1

Chemokine receptors share common features present
in many members of the GPCR superfamily. All chemo-
kine receptors have two conserved Cys residues: one
in the N-terminal domain and the other within extra-
cellular loop 3, presumably forming a disulfide bridge
that is an integral part of the ligand-recognition site.
Except for CXCR3, there are also two conserved acidic
residues within the helical bundle. The first, an Asp in
helix 2, is intimately associated with receptor activation
as is the case with all GPCRs.

Unlike the GPCRs binding monoamine ligands (and
featuring a second Asp residue in helix 3 close to the
extracellular surface), chemokine receptors have a Glu
residue in a similar position but on helix 7. In common
with other superfamily members, there is a conserved
DRY (Asp-Arg-Tyr) triad at the C-terminus of helix 3,
speculatively involved in G-protein binding. Unique to
the chemokine receptor subfamily, all have an acidic
N-terminus with gross negative charges ranging from
-1 to -6, and this might distinguish the initial recogni-
tion event from that in other GPCRs.6

As no experimental structure is presently available
for the CCR3 receptor, structure-based design is inap-
plicable, and receptor-modeling approaches must be
employed. Receptor modeling is a computational tech-
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nology that allows building atomistic or virtual sur-
rogates for structurally uncharacterized bioregulators.
When validated using quantitative structure-activity
relationships (QSARs), such models can be used to
predict the binding affinity of new compounds. Of
particular interest in biomedical research are QSARs
based on three-dimensional models (3D-QSAR)9-12 be-
cause they allow for the simulation of directional
forces: hydrogen bonds and metal-ligand interactions,
entities known to play a key role for both molecular
recognition and selective binding.13-15 While at the true
biological receptor only one ligand molecule may bind
at the time, a QSAR study is typically based on a series
of ligand molecules binding “simultaneously” to the
receptor surrogate. In 3D-QSAR, swhere each ligand
molecule is represented by a single, three-dimensional
entity, sthe identification of the bioactive conformation,
orientation, and, possibly, the protonation state is a
crucial step in the procedure. If the underlying phar-
macophore hypothesis is based on incorrect assump-
tions, the resulting surrogate is hardly of any use for
predictive purposes. This alignment problem has long
been recognized,9-11 and two principle ways to circum-
vent it have been explored: in situ generation of the
active conformer16 and multiple ligand representation
(4D-QSAR).17-22 The 4D approaches represent the ligand
molecules (of both training and test sets) as an ensemble
of conformations, orientations, and protonation states.
The most likely bioactive representation may then be
genetically evolved from this reservoir, for example,
using a Boltzmann-weighted selection criterion.19-22

An adequate treatment of conformationally flexible
H-bond donor or acceptor moieties at the true biological
receptor, able to engage in differently directed hydrogen
bonds with dissimilar ligand molecules, may be simu-
lated through the definition of “H-bond flip-flop” par-
ticles (properties) when using quasi-atomistic receptor
models.19-22

Even with 4D-QSAR, a major unknown persists:
manifestation and magnitude of the induced fit, the
ligand-induced adaptation of the binding site to the
topology of the small molecule. In the absence of the
true biological receptor, these quantities cannot unam-
biguously be determined; the most recently developed
5D-QSAR tools offer a possible solution to the problem;
here, several induced-fit scenarios (cf. Methods) are
evaluated simultaneously. 5D-QSAR as implemented in
Quasar not only allows for the simultaneous evaluation
of different induced-fit scenarios but also allows for the
induced-fit crossover and linear combination of the
individual hypotheses.25,26

More recently, a study on the structure-activity
relationship of N-(ureidoalkyl)-benzylpiperidines as po-
tent CCR3 inhibitors has been published.27 Starting
from a structurally related series of N-(alkyl)-benzylpi-
peridines CCR1 receptor antagonists, the introduction
of the ureidoalkyl moiety improved the binding potency
from the micromolar to the low-nanomolar range.
Series-1 of our study includes 50 of these ligands, which
were synthesized and tested at Brystol-Myers Squibb
in Wilmington, DE. Our main data (series-2) comprises
91 ureidoalkyl-piperazines, aminoalkyl-piperazines, and
amidoalkyl-piperazines displaying a similar scaffold but
synthesized28 and tested29 at Boehringer Ingelheim in

Biberach, Germany. For series-1, IC50 values ranging
from 1.0 nM to 19.3 µM are available,27 while for series-
2, Ki values in the range from 50 nM to 63 µM have
been experimentally determined.29

The ultimate goal of our study was to understand the
interaction of CCR3 inhibitors at the molecular level by
establishing and validating a family of 3D receptor
models for the structurally uncharacterized receptor and
to use these models to predict novel, more potent
ligands. For this task, we made use of the Quasar
technology24-26 and a total of 141 compounds comprising
four substance classes. In our simulations, those com-
pounds were represented by a total of 412 conformers
(4D-QSAR) while simultaneously exploring six different
induced-fit scenarios (5D-QSAR). The Quasar technol-
ogy includes an option to determine the contribution of
any functional group toward the free energy of ligand
binding, ∆G. We made use of this possibility in order
to propose new compounds with different chemical and
structural features than those used as training and test
ligands, respectively.

Methods

A quasi-atomistic binding-site surrogate refers to a
high level of model abstraction. The essential informa-
tion about the hypothetical receptor site is provided by
means of a three-dimensional surface that surrounds
the ligand molecules (defining the training set) at van
der Waals distance and is populated with properties
mapped onto it. The topology of this surface mimics the
three-dimensional shape of the binding site; the mapped
properties represent other information of interest, such
as hydrophobicity, partial charge, electrostatic potential,
and hydrogen-bonding propensity. A variety of algo-
rithms to generate and validate binding-site models
have been described.18,24-26,28-33 While most approaches
are based on a 3D-QSAR concept, more recent algo-
rithms allow for a multiple representation of the ligand
conformation (4D-QSAR).24-26,33,34

The Quasar concept developed at the Biographics
Laboratory 3R allows for a multiple representation of
the ligand topology (conformations, orientations, and
protonation states, referred to as the fourth dimension
in QSAR)19 as well as a multiple representation of
induced-fit hypotheses (referred to as the fifth dimen-
sion in QSAR).24-26 Both ensembles are available
throughout the entire simulation, and genetic algo-
rithms are used for selecting the most predictive com-
bination.25 This approach reduces the bias associated
with the choice of the bioactive conformation, the ligand
alignment, and the induced-fit model. Quasar explicitly
allows for H-bond flip-flop and accounts for solvation
phenomena.24-26 The technical details of model con-
struction in Quasar are published elsewhere25,35 and
shall therefore only be summarized here.

1. Construction of the Receptor Surface. Induced
fit may be simulated by adapting a van der Waals
surface (generated about all ligands defining the train-
ing set) to the topology of each ligand molecule of
training, test, and prediction sets. This is achieved by
adapting this surface onto the van der Waals surface of
each individual ligand molecule. The procedure, mim-
icking a local induced fit, can be performed using
different protocols: isotropically (linearly), anisotropi-
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cally (field scaled),36 or through energy minimization.25

The corresponding rms shift (the simulated induced fit)
is used to estimate the associated energy (cf. eq 1).
Typical rms shifts are in the range of 0.4-2.5 Å and
are associated with induced-fit energies ranging from
0.2 to 6.0 kcal/mol.

2. Generation of an Initial Family of Parent
Structures. Points/domains on the receptor surface are
then randomly populated with atomistic properties.21,25

While the distributed properties are identical for all
ligand molecules, their exact location on the envelope
varies slightly (rms fluctuations range from 0.5 to 1.5
Å with maximal individual shifts as large as 3.5 Å)
depending on the very ligand molecule.

3. Evolution of a Model Family. When we use a
genetic algorithm (for a detailed description, see, for
example, refs 31 and 37), the initial family of receptor
models is evolved simulating crossover events. At each
crossover step, there is a small probability (typically
0.01-0.02) of a transcription error, which is expressed
by a random mutation. Thereafter, those two individuals
of the population with the highest lack-of-fit value25 are
discarded. This process is repeated until a target cross-
validated r2 (typically 0.75-0.95) or the experimental
accuracy of the binding data (typically 0.24-0.40 kcal/
mol, corresponding to an uncertainty of a factor 0.5-
2.0 in the binding affinity) is reached.25,35

4. Estimation of Relative Free Energies of Ligand
Binding. In our concept,24-26 we have combined the
approach of Blaney et al.38 with a method of Still et al.39

for estimating ligand solvation energies and a term to
correct for the loss of entropy upon receptor binding
following Searle and Williams,40

When using a multiple ligand representation, the
interactions of all conformations, orientations, and
protonation-states are calculated toward all members
of the receptor-model family. The contribution of an
individual entity to the total energy is determined using
a normalized Boltzmann distribution,19-21,24-26

where wi ) (∑Ebdg.ind/Ebdg.ind.lowest)
-1 is the normal-

izing factor.
Free energies of ligand binding, ∆Gpred, are then

predicted by means of a linear regression between ∆Gexp
and Ebinding (cf. eq 1) using the ligand molecules of the
training set:

Slope and intercept of eq 3 are inherent to a given
receptor model and are subsequently applied to predict
the relative binding energy of ligand molecules different
from those in the training set. As in Quasar, the receptor
surrogate is represented by a family of models (typically
100-1000); this approach allows for a subtler scaling
of both the ligand-receptor interactions and the induced-
fit scenario.

5. Analysis of the Model Family. A mandatory
criterion to validate a family of receptor models is their
ability to predict relative free energies of ligand binding
for an external set of test ligand molecules, not used
during model construction (e.g., its rms deviation or the
predictive r2 value). A more serious challenge to a model
family is the so-called scramble test (cf. ref 37). Here,
the experimental binding data (i.e., ∆Gexp) of the train-
ing set are randomly scrambled, and the simulation is
repeated under otherwise identical conditions. If, under
these circumstances, the ligands of the test set are still
predicted correctly (i.e., a predictive r2 > 0.5), the model
is worthless, as it is not sensitive toward the biological
data (∆Gexp).

The Quasar technology,24-26 with its underlying 5D-
QSAR concept, allows for the simultaneous evaluation
of an ensemble of induced-fit hypotheses thus reducing
the bias with the choice of the adaptation mechanism.
Presently, up to six protocols may be selected: (1) a
linear mode, scalable from 0.0 to 1.0 and typically
applied at the 0.75 level, with 0.0 referring to “no
induced fit” and 1.0 to a maximal adaptation to the
topology of the individual molecule; (2-4) adaptations
based on the steric-, electrostatic-, and H-bond-field,
respectively; (5) energy minimization along the steric-
field vectors;44 (6) adaptation based on the molecular
lipophilicity potential.45,46

The induced fit in protocols 2-4 and 6 is executed
proportional to the effective field acting on the outer
surface (accommodating all ligand molecules of the
training set) followed by a constrained minimization,
to restore equal separations between neighbored grid
points defining the adapted surface. While the linear
mode behaves isotropically and depends solely on mo-
lecular shape, all other options account for molecular
properties (presently the steric-field, the electric charge
distribution, H-bond donors or acceptors, and the lipo-
philicity potential) yielding an anisotropic induced-fit
model. Figure 1 shows the superimposed induced-fit
models obtained for the CCR3 receptor surrogate (series-
2) in this study.

During parent generation, all selected induced-fit
models are evaluated, and the entity with the lowest
lack-of-fit value is selected. This implies that for each
of the i models of the surrogate family, n ligands
represented by m conformers (typically 4-16) and k
induced-fit models (2-6) are evaluated, constituting a
genuine 5D-QSAR approach.47

The most recent version of Quasar (4.5)35 promotes
the formation of domains with equal (or at least similar)
propertiesssalt bridges, hydrogen bond donors and ac-
ceptors, hydrophobic or solvent-accessible regionssas
it is observed with true biological receptors. Degrees of
“property freedom” (i.e., which property may be depos-
ited on which region in receptor space during the
simulated evolution) are now assigned based on very
stringent criteria, for example, hydrogen-bonding pro-
pensity based on the directionality of hydrogen bonds
and the probability to engage in salt bridges on the
presence of charged functional groups on the ligands.
The gross charge of the receptor surrogate is restricted
to (1.0 for a neutral ligand set and to the opposite
ligand charge (1.5 for all other cases. For the CCR3
receptor with all ligands bearing a formal charge of +1.0

Ebinding,ligand ) Eligand-receptor - T∆Sbinding - Esolvation -
∆Einternal strain - Einduced fit (1)

Ebdg.tot ) ∑Ebdg.ind‚exp(-wi‚Ebdg.ind/Ebdg.ind.lowest) (2)

∆Gpred ) (|a|‚Ebinding) + b (3)
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(the protonated piperazyl or piperidyl N atom), the total
charge of the surrogate must lie in the range from -2.5
to +0.5. Finally, the scoring function based on the
directional Yeti force field35 uses a 6/5 potential function
for evaluating H-bond interactions instead of the previ-
ous 12/10 form. This reduces the sensitivity of the total
energy on the H‚‚‚acceptor distance. The directionality
terms remain unaltered. These modifications make it
more difficult (i.e., more time-consuming) to identify a
robust family of receptor models, the benefit being the
clearly safer prediction of affinities of new compounds.

Results and Discussion
Generation of the Ligand Data Set, Conformer,

and Training-Set Selection. The three-dimensional
structures of all ligand molecules (50 compounds for
series-1 and 91 compounds for series-2) were generated
using MacroModel 6.548 and optimized in aqueous
solution based on the AMBER* force field.49 An exten-
sive conformational search was then performed for at
least one compound of any molecular scaffold present
in the data set (series-1, 6 compounds; series-2, 35
compounds) and two conceivable protonation states for
each ligand, thereby allowing for 20 000 minimized
structures each, again using MacroModel and simulat-
ing an aqueous environment. Therefore, all conforma-
tions within 10 kcal/mol (up to 4611 per molecule) from
the lowest-energy conformer were retained to analyze
the conformationally accessible space and to identify
those entities allowing for a common pharmacophore
hypothesis. On the basis of the analyses of these
structures, up to eight conformers were then selected
for each ligand, thereby defining a 4D data set. Because
of the large number of low-energy conformers, we
decided to only select entities featuring a similar
backbone conformation but allowed for a variation in
the side chain substitution. For the 50 ligands of series-
1, this protocol resulted in 201 conformers; their internal
strain ranged from 0 to 3.1 kcal/mol (average of 0.33
kcal/mol); for the 91 molecules comprising series-2, 210
conformers were selected, ranging from 0.0 to 5.1 kcal/
mol in internal strain (average of 0.75 kcal/mol). In

Quasar, the internal strain of a ligand is a component
of the energy equation (cf. eq 1), which hampers the
chance of a “high-energy” conformer to contribute to the
Boltzmann-weighted ensemble (cf. eq 2). For each
conformer, MNDO/ESP charges were then calculated
using MOPAC 6.0.50 The solvation energy was deter-
mined using the approach of Still et al.,39 and its
entropic contribution was determined following the
approach of Searle and Williams.40 The ligand topologies
for series-1 are given in ref 27; those for series-2 are
shown in Table 1. The training set was manually
selected from the whole data set to obtain a maximal
diversity based on the 2D substitution pattern. First,
all ligands were ranked according to their experimental
binding affinity. Then, starting with the most active
compound (rank no. 1), any subsequent ligand (rank no.
n) was marked “test ligand” if its 2D substitution
pattern was present in any combination within the
ligands ranked from 1 to (n - 1); otherwise, it was added
to the training set.

Boundary Conditions for the 5D-QSAR Simula-
tions. For both series, we made use of all six induced-
fit scenarios available in Quasar: a linear induced fit
scaled to 75%, four field-based modes (steric, electro-
static, H-bond, lipophilicity), and a protocol based on
energy minimization.25,35 An induced fit simulated using
the steric-field as the determinant typically yields the
tightest model s[series-1, 1.5 Å (min ) 1.4, max ) 1.8
Å); series-2, rms induced fit of 1.6 Å (min ) 1.4, max )
2.0 Å)]. When we select the H-bond-field, the effect is
only moderate s[series-1, 0.3 Å (min ) 0.2, max ) 0.5
Å); series-2, rms induced fit of 0.3 Å (min ) 0.1, max )
0.6 Å)].

For series-1, the evolution was based on 250 receptor
surrogates and simulated for 20 generations (5000
crossovers). The larger series-2 including three sub-
stance classes was simulated for 72 generations (18 000
crossovers). For all runs, the default mutation rate of
0.02 was used during transcription of the quasi-atom-
istic properties. The calculations were performed with
Quasar 4.5, the most recent version of the software35

on Macintosh G4 computer systems. The activity of the

Figure 1. Stereoview of the envelope selection (induced-fit hypotheses) for the most potent antagonist molecule (1101) of series-
2. For clarity, only 3 of 6 simulated induced-fit scenarios are shown. Color coding is as follows: red, steric-field mode; blue,
H-bond-field mode; green, lipophilicity-potential mode.
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ligands within series-1 covers a range of 5.4 kcal/mol,
sa factor 10 992 in the IC50 value; those of series-2 cover
a range of 4.2 kcal/mol, sa factor 1256 in the Ki value.
The narrower range of activity within series-2 is due to
insufficient solubility of low-activity compounds.

Results Obtained for Series-1. The simulation
reached the target cross-validated r2 of 0.950 already

at 4658 crossovers (18.6 generations) and resulted in a
predictive r2 of 0.879. Both values reflect quantities
averaged over the 250 models that, among themselves,
differ in 30% [27-34%] of the mapped 129 properties
on the 314 available positions of the surface. The cross-
validation was based on five groups comprising eight
ligands each (“leave-8-out”). A stereorepresentation of
the receptor surrogate is depicted in Figure 2; experi-
mental and calculated IC50 values are compared in
Table 2 and shown in Figure 3 (left panel). The
molecules and their experimental IC50 values are given
in ref 27 (Tables 5-11).

The Y-shaped receptor model can be best described
as a predominantly hydrophobic pocket with two dis-
tinct hydrophilic regions: the stem (bottom, cf. Figure
2) may be characterized as a H-bond acceptor-rich area
and accommodates the hydrophilic-substituted central
aromatic ring of the inhibitors. Its transition into the
right lobe is amphiphilic with both H-bond donors and
flip-flops; the right lobe itself is hydrophobic and binds

Table 1. Ligand Substitution Pattern in Series-2 (cf. Chart 1)

ligand R1 X R2 R3 ligand R1 X R2 R3

Training Set (66)
1101 3,5-di(CH3) -N-(CH2)2- 4-OCH3 cyclohexyl 562 4-F -NH-CO-NH- 4-OCH3 cyclohexyl
763 3,5-diCl -N-(CH2)2- 4-OCH3 cyclohexyl 597 4-CH3 -NH-CO-NH- 4-CF3 cyclohexyl
781 3,5-diCl -N-(CH2)2- H cyclohexyl 795 4-N(CH3)2 -N-(CH2)2- 4-CF3 cyclohexyl
792 2-OCH3 -N-(CH2)2- 4-CF3 cyclohexyl 599 4-F -NH-CO-NH- 4-CF3 cyclohexyl
799 3,5-diCl -N-(CH2)2- 4-CF3 cyclohexyl 581 -NH-CO-NH- 4-TBu cyclohexyl
1076 4-CH3 -NH-CO-NH- isobutyla 3,4-diCl-benzene 689 4-F -N-(CH2)2- 4-CF3 phenyl
790 3,5-diCl -N-(CH2)2- 4-TBu cyclohexyl 595 4-CF3 -NH-CO-NH- 4-CF3 cyclohexyl
785 4-CF3 -N-(CH2)2- 4-TBu cyclohexyl 576 4-CF3 -NH-CO-NH- cyclohexyl
1066 3,5-diCl -NH-CO-NH- isobutyla cyclohexyl 558 4-CF3 -NH-CO-NH- 4-OCH3 cyclohexyl
1077 3,5-di(CH3) -NH-CO-NH- isobutyla 3,4-diCl-benzene 639 2-OCH3 -N-(CH2)2- 2-OCH3 phenyl
1079 4-CH3 -NH-CO-NH- 4-phenyl cyclohexyl 659 4-CF3 -N-(CH2)2- 4-N(CH3)2 phenyl
1080 3,5-di(CH3) -NH-CO-NH- 4-phenyl cyclohexyl 593 4-OCH3 -NH-CO-NH- 4-CF3 cyclohexyl
784 4-OCH3 -N-(CH2)2- 4-TBu cyclohexyl 586 4-N(CH3)2 -NH-CO-NH- 4-TBu cyclohexyl
789 4-TBu -N-(CH2)2- 4-TBu cyclohexyl 669 4-N(CH3)2 -N-(CH2)2- phenyl
782 H -N-(CH2)2- 4-TBu cyclohexyl 583 4-OCH3 -NH-CO-NH- 4-TBu cyclohexyl
685 4-OCH3 -N-(CH2)2- 4-CF3 phenyl 584 4-TBu -NH-CO-NH- 4-TBu cyclohexyl
1065 4-Cl -NH-CO-NH- isobutyla cyclohexyl 537 2-OCH3 -NH-CO-NH- 4-CF3 methyl
793 4-OCH3 -N-(CH2)2- 4-CF3 cyclohexyl 443 4-CH3 -NH-CO-NH- 2-OCH3 phenyl
591 H -NH-CO-NH- 4-CF3 cyclohexyl 592 2-OCH3 -NH-CO-NH- 4-CF3 cyclohexyl
675 2-OCH3 -N-(CH2)2- 4-TBu phenyl 737 -N-(CH2)2- 4-CF3 methyl
1085 3,5-di(CH3) -N-(CH2)2- 4-phenyl cyclohexyl 578 4-CH3 -NH-CO-NH- cyclohexyl
796 4-CH3 -N-(CH2)2- 4-CF3 cyclohexyl 601 2-OCH3 -NH-CO-CH2- 2-OCH3 phenyl
652 4-CH3 -N-(CH2)2- 4-OCH3 phenyl 580 4-F -NH-CO-NH- cyclohexyl
753 4-TBu -N-(CH2)2- 4-OCH3 cyclohexyl 517 4-F -NH-CO-NH- 4-N(CH3)2 methyl
676 4-OCH3 -N-(CH2)2- 4-TBu phenyl 637 2-OCH3 -NH-CO-CH2- 4-TBu phenyl
794 4-CF3 -N-(CH2)2- 4-CF3 cyclohexyl 547 4-OCH3 -NH-CO-NH- 2-OCH3 cyclohexyl
797 4-F -N-(CH2)2- 4-CF3 cyclohexyl 707 4-F -N-(CH2)2- 4-OCH3 methyl
552 3,5-diCl -NH-CO-NH- 2-OCH3 cyclohexyl 484 4-OCH3 -NH-CO-NH- 4-CF3 phenyl
557 4-TBu -NH-CO-NH- 4-OCH3 cyclohexyl 710 -N-(CH2)2- methyl
760 4-CH3 -N-(CH2)2- 4-OCH3 cyclohexyl 632 4-CH3 -NH-CO-CH2- phenyl
758 4-CF3 -N-(CH2)2- 4-OCH3 cyclohexyl 621 4-CF3 -NH-CO-CH2- 4-N(CH3)2 phenyl
585 4-CF3 -NH-CO-NH- 4-TBu cyclohexyl 609 -NH-CO-CH2- 4-OCH3 phenyl
570 3,5-diCl -NH-CO-NH- 4-N(CH3)2 cyclohexyl 635 3,5-diCl -NH-CO-CH2- cyclohexyl

Test Set (25)
783 2-OCH3 -N-(CH2)2- 4-TBu cyclohexyl 560 4-CH3 -NH-CO-NH- 4-OCH3 cyclohexyl
786 4-N(CH3)2 -N-(CH2)2- 4-TBu cyclohexyl 516 3,5-diCl -NH-CO-NH- 4-N(CH3)2 methyl
754 3,5-diCl -N-(CH2)2- 2-OCH3 cyclohexyl 543 3,5-diCl -NH-CO-NH- 4-CF3 methyl
661 4-CH3 -N-(CH2)2- 4-N(CH3)2 phenyl 553 4-F -NH-CO-NH- 2-OCH3 cyclohexyl
791 -N-(CH2)2- 4-CF3 cyclohexyl 472 4-F -NH-CO-NH- phenyl
687 4-N(CH3)2 -N-(CH2)2- 4-CF3 phenyl 470 4-CH3 -NH-CO-NH- phenyl
561 3,5-diCl -NH-CO-NH- 4-OCH3 cyclohexyl 713 4-CF3 -N-(CH2)2- methyl
798 4-TBu -N-(CH2)2- 4-CF3 cyclohexyl 574 4-OCH3 -NH-CO-NH- cyclohexyl
598 3,5-diCl -NH-CO-NH- 4-CF3 cyclohexyl 612 4-CF3 -NH-CO-CH2- 4-TBu cyclohexyl
755 -N-(CH2)2- 4-OCH3 cyclohexyl 542 4-CH3 -NH-CO-NH- 4-CF3 methyl
590 4-F -NH-CO-NH- 4-TBu cyclohexyl 636 -NH-CO-CH2- 4-TBu phenyl
579 3,5-diCl -NH-CO-NH- cyclohexyl 715 4-CH3 -N-(CH2)2- methyl
776 4-CF3 -N-(CH2)2- cyclohexyl

a The isobutyl group is directly bound to the backbone; that is, no phenyl linker is present.

Chart 1
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the benzyl or 4-F-benzyl portion of the ligand molecules.
The left lobe is predominantly hydrophobic with a
H-bond-donating domain interacting with the H-bond-
accepting substituents on the aromatic ring adjacent to
the urea functionality.

The rms deviation for the 40 ligand molecules of the
training set is 0.27 kcal/mol (a factor 0.6 off in the IC50
value); the maximal individual deviation is 0.84 kcal/
mol (3.2 off the IC50). With respect to the induced-fit
hypothesis, the simulated evolution converged at the
steric-field model.51 Ten compounds (not used for model
construction) were selected for testing the predictive
power of the receptor surrogate yielding a predictive r2

of 0.879. On the average, the predicted IC50 value of the
test ligands deviates by 0.41 kcal/mol from the experi-

ment (1.0 off the IC50); the maximal observed deviation
is 0.59 kcal/mol (1.8 off the IC50). A series of five
scramble tests (with an average predictive r2 of -0.415)
demonstrated the sensitivity of the surrogate toward the
biological data (Figure 3, right panel).

To identify potential sites and functionalities allowing
a further increase of the binding affinity, the individual
functional groups of both training and test sets were
analyzed for their contribution toward the free energy
of ligand binding, ∆G. Table 3 lists all details of
enthalpic (electrostatic, van der Waals, H-bond, and
polarization terms), entropic, solvation, and induced-
fit contributions toward the calculated binding affinity.
Figure 4 shows a comparison for the most potent ligand
of the series (113; IC50 ) 1.0 nM) with an only moderate

Figure 2. Stereorepresentation of the surrogate for the CCR3 receptor (series-1). The mapped properties are colored as follows:
red, positively charged salt bridge (e.g., Arg-Lys); blue, negatively charged salt bridge (e.g., Asp-Glu); green, H-bond donor; yellow,
H-bond acceptor; light brown, positively charged hydrophobic; dark brown, negatively charged hydrophobic; gray, neutral
hydrophobic.

Table 2. Experimental and Calculated IC50 Values for Series-1a

ligand27 conformers
IC50

(exptl)27
IC50

(calcd)
factor off
in IC50 ligand27 conformers

IC50
(exptl)27

IC50
(calcd)

factor off
in IC50

Training Set (40)
113 4 1.0 × 10-9 (2.18 ( 0.44) × 10-9 1.2 96 4 6.7 × 10-8 (4.03 ( 0.93) × 10-8 0.7
115 8 1.0 × 10-9 (9.09 ( 1.97) × 10-10 0.1 93 2 8.5 × 10-8 (1.28 ( 0.32) × 10-7 0.5
121 4 1.0 × 10-9 (1.38 ( 0.36) × 10-9 0.4 89 4 1.14 × 10-7 (1.85 ( 0.91) × 10-7 0.6
111 8 2.0 × 10-9 (1.86 ( 0.75) × 10-9 0.1 77 4 1.25 × 10-7 (1.62 ( 0.36) × 10-7 0.3
114 8 2.0 × 10-9 (2.01 ( 0.40) × 10-9 0.0 95 4 1.41 × 10-7 (1.03 ( 0.29) × 10-7 0.4
120 2 2.0 × 10-9 (4.34 ( 1.02) × 10-9 1.2 91 4 2.28 × 10-7 (5.37 ( 1.75) × 10-8 3.2
102 8 3.0 × 10-9 (6.32 ( 1.55) × 10-9 1.1 90 2 2.6 × 10-7 (1.45 ( 0.38) × 10-7 0.8
110 4 3.0 × 10-9 (2.61 ( 0.70) × 10-9 0.1 76 2 3.1 × 10-7 (3.53 ( 0.77) × 10-7 0.1
105 4 7.0 × 10-9 (7.53 ( 1.81) × 10-9 0.1 118 2 2.77 × 10-7 (3.27 ( 0.83) × 10-7 0.2
101 4 8.0 × 10-9 (1.37 ( 0.37) × 10-8 0.7 43 2 4.5 × 10-7 (5.91 ( 1.36) × 10-7 0.3
103 8 8.0 × 10-9 (9.62 ( 2.47) × 10-9 0.2 44 2 4.5 × 10-7 (9.38 ( 1.82) × 10-7 1.1
104 2 9.0 × 10-9 (1.49 ( 0.35) × 10-8 0.7 85 2 5.29 × 10-7 (3.56 ( 1.14) × 10-7 0.5
106 8 1.1 × 10-8 (6.71 ( 1.67) × 10-9 0.6 40 4 6.0 × 10-7 (5.48 ( 1.05) × 10-7 0.1
117 2 1.1 × 10-8 (5.48 ( 1.48) × 10-9 1.0 41 2 7.5 × 10-7 (7.27 ( 1.52) × 10-7 0.0
109 2 1.7 × 10-8 (2.07 ( 1.02) × 10-8 0.2 42 2 7.5 × 10-7 (6.04 ( 0.93) × 10-7 0.2
119 2 2.1 × 10-8 (1.76 ( 0.54) × 10-8 0.2 86 8 7.77 × 10-7 (7.19 ( 2.42) × 10-7 0.1
98 8 4.2 × 10-8 (1.85 ( 0.44) × 10-8 1.3 38 1 9.0 × 10-7 (1.21 ( 0.18) × 10-6 0.3
100 8 4.7 × 10-8 (3.96 ( 1.33) × 10-8 0.2 36 3 2.6 × 10-6 (3.34 ( 1.47) × 10-6 0.3
108 2 5.3 × 10-8 (5.99 ( 2.22) × 10-8 0.1 61 4 4.65 × 10-6 (5.03 ( 1.88) × 10-6 0.1
97 8 6.4 × 10-8 (4.39 ( 1.22) × 10-8 0.5 62 2 1.1 × 10-5 (5.93 ( 1.78) × 10-6 0.9

Test Set (10)
112 2 2.0 × 10-9 (4.49 ( 1.11) × 10-9 1.2 88 8 3.6 × 10-7 (1.77 ( 1.04) × 10-7 1.0
107 8 8.0 × 10-9 (3.84 ( 1.25) × 10-9 1.1 84 4 4.23 × 10-7 (1.73 ( 1.04) × 10-7 1.5
94 4 4.0 × 10-8 (4.74 ( 1.44) × 10-8 0.2 75 1 3.61 × 10-7 (1.00 ( 0.21) × 10-6 1.8
99 4 5.5 × 10-8 (3.72 ( 1.24) × 10-8 0.5 39 2 1.75 × 10-6 (1.12 ( 0.26) × 10-6 0.6
92 2 2.37 × 10-7 (1.38 ( 0.32) × 10-7 0.7 37 2 3.4 × 10-6 (1.37 ( 0.38) × 10-6 1.5
aThe standard deviation of the calculated values is derived from the variation over the 250 models comprising the surrogate family.

The deviation factor is calculated as (IC50,exptl/IC50,calcd) - 1.0 for IC50,exptl/IC50,calcd > 1.0 and (IC50,calcd/IC50,exptl) - 1.0 otherwise. All values
are given in M.
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binder (43; IC50 ) 0.45 µM). The difference would seem
to be explainable by the “destabilizing” presence of the
H-bond donor functionality in the indole ring of 43: its
interaction with the receptor surrogate yields -1.8 kcal/
mol; its contribution to ligand desolvation (4.4 kcal/mol)
is not compensated, instead leading to a net unfavorable
contribution of ∆∆G ) 3.3 kcal/mol for this functional
group (2.6 kcal/mol thereof is associated with ligand
desolvation, 0.7 kcal/mol with the entropic change
during ligand binding; the contributions of both induced
fit and internal strain are zero). On the other hand, the

methyl amide moiety of 113 contributes favorably
toward ligand binding: the interaction with the receptor
is calculated to -11.6; desolvation contributes with
-9.0, yielding a net contribution of ∆∆G ) -20.6 kcal/
mol with the main component being the favorable
desolvation of the -NH-CH3 group. The net calculated
∆G is -11.6 kcal/mol for 113 and -8.1 kcal/mol for 43,
respectively.

Results Obtained for Series-2. After 18 000 cross-
overs (72 generations), the simulation reached the cross-
validated r2 of 0.861 and a predictive r2 of 0.798. These

Figure 3. Comparison of experimental and predicted binding affinities for the CCR3 receptor (series-1): correct simulation
(left); scramble test (right).

Figure 4. Functional-group analysis of compounds 113 (left) and 43 (right); top, colored by atom type; bottom, contribution of
the individual functional groups to ∆Gpred. Color coding is as follows: blue, excellent; green, good; white, neutral; yellow, weak;
red, poor. Residual fragments (not specifically decomposed interaction scheme) are shown in gray.

Novel Ligands for the Chemokine Receptor-3 (CCR3) Journal of Medicinal Chemistry, 2005, Vol. 48, No. 5 1521



quantities reflect values averaged over the 250 models
that, among themselves, differ in 20% [17-29%] of the
mapped 150 properties on 294 available positions of the
surface. The cross-validation was based on six groups
comprising 11 ligands each (“leave-11-out”). A stereo-
representation of the quasi-atomistic receptor surrogate
is depicted in Figure 5; experimental and calculated Ki
values are compared in Figure 6 (left panel) and Table
4.

The pear-shaped (or truncated Y-shaped) receptor
model can be best described as a predominantly hydro-
phobic pocket with two distinct hydrophilic regions: one
opposite to the protonated piperazyl N-atom mimicking
the salt-bridge counterpart (Asp or Glu), and the other
accommodating the amphiphilic substituents of the
central aromatic ring (Figure 5). The subtleties of
interacting with the predominantly aromatic portions

of the ligand molecules are brought about by the
electrostatic distribution within the hydrophobic portion
of the surrogate.

The rms deviation for the 66 ligand molecules of the
training set is 0.32 kcal/mol (a factor 0.7 off in the Ki
value); the maximal individual deviation is 0.78 kcal/
mol (2.9 off Ki). With respect to the induced-fit hypoth-
esis, the simulated evolution converged at the model
based on the electrostatic field51 which reflects the
ligand data set sparse in H-bond-donating and -accept-
ing functionalities. Twenty-five compounds (not used for
model construction) were selected for testing the predic-
tive power of the receptor surrogate yielding a predictive
r2 of 0.798. On the average, the predicted Ki value of
the test ligands deviates by 0.33 kcal/mol from the
experiment (0.8 off Ki); the maximal observed deviation
is 1.12 kcal/ mol (5.8 off Ki). A series of five scramble

Table 3. Functional Group Analysis for Series-1a

ligand total electrostatic van der Waals H-bond polarization solvation T∆S internal ind.fit ∆Gcalcd

113 -69.817 -29.578 -20.683 -10.676 -8.881 -55.189 -2.8 0.000 0.218 -11.610
115 -71.191 -29.605 -20.235 -12.106 -9.245 -55.779 -2.8 0.281 0.212 -12.120
121 -71.760 -29.410 -21.949 -10.722 -9.679 -56.585 -2.8 0.285 0.214 -11.876
111 -73.376 -29.126 -18.798 -16.369 -9.083 -58.351 -2.8 0.306 0.217 -11.702
114 -68.901 -29.459 -19.179 -11.125 -9.137 -53.263 -3.5 0.268 0.213 -11.657
120 -70.165 -29.944 -22.509 -8.502 -9.211 -55.937 -2.8 0.000 0.218 -11.210
102 -77.791 -31.682 -23.027 -13.501 -9.581 -63.493 -2.8 0.285 0.222 -10.991
110 -72.174 -30.025 -20.667 -12.453 -9.029 -57.639 -2.8 0.000 0.228 -11.506
105 -69.655 -29.722 -19.748 -11.372 -8.814 -54.910 -3.5 0.136 0.219 -10.889
101 -76.441 -31.947 -23.947 -11.290 -9.258 -62.868 -2.8 0.000 0.233 -10.540
103 -75.255 -34.199 -18.599 -11.866 -10.591 -61.225 -2.8 0.273 0.211 -10.746
104 -66.821 -28.786 -17.886 -11.535 -8.614 -52.472 -3.5 0.135 0.222 -10.492
106 -68.803 -29.674 -18.267 -11.728 -9.135 -53.017 -4.2 0.413 0.217 -10.956
117 -66.495 -29.956 -19.575 -8.407 -8.557 -52.400 -2.8 0.000 0.220 -11.074
109 -72.027 -29.249 -18.986 -15.183 -8.609 -57.331 -3.5 0.665 0.230 -10.300
119 -68.646 -30.776 -20.652 -9.591 -7.627 -54.526 -3.5 0.000 0.226 -10.394
98 -72.886 -31.594 -20.961 -10.756 -9.575 -58.535 -3.5 0.271 0.215 -10.365
100 -70.442 -30.869 -18.127 -12.307 -9.138 -55.095 -4.9 0.302 0.223 -9.923
108 -65.356 -28.901 -16.553 -11.727 -8.176 -51.241 -4.2 0.003 0.229 -9.682
97 -70.582 -32.184 -19.844 -8.957 -9.596 -56.010 -4.2 0.296 0.214 -9.862
96 -71.550 -32.111 -21.789 -8.472 -9.178 -57.919 -3.5 0.000 0.219 -9.913
93 -68.893 -31.064 -20.025 -8.115 -9.689 -56.626 -2.8 0.000 0.226 -9.241
89 -67.797 -30.950 -17.750 -11.092 -8.005 -54.350 -4.2 0.001 0.222 -9.024
77 -68.642 -30.230 -19.498 -10.319 -8.596 -56.250 -2.8 0.269 0.220 -9.103
95 -68.217 -31.526 -18.002 -8.503 -10.187 -54.820 -3.5 0.312 0.221 -9.364
91 -66.981 -31.012 -16.144 -10.454 -9.371 -53.951 -2.8 0.260 0.224 -9.746
90 -67.257 -32.388 -15.614 -9.374 -9.881 -55.064 -2.8 0.000 0.225 -9.167
76 -67.376 -31.260 -19.721 -8.189 -8.206 -55.713 -2.8 0.000 0.215 -8.649
118 -68.081 -32.483 -18.686 -8.983 -7.929 -55.658 -3.5 0.000 0.230 -8.693
43 -65.491 -31.680 -16.063 -9.266 -8.483 -54.115 -2.8 0.000 0.227 -8.349
44 -65.584 -32.021 -15.810 -9.323 -8.429 -54.468 -2.8 0.007 0.228 -8.080
85 -65.750 -31.719 -19.003 -6.617 -8.411 -54.084 -2.8 0.000 0.222 -8.644
40 -62.902 -30.975 -15.420 -8.580 -7.926 -50.483 -3.5 0.303 0.223 -8.393
41 -62.098 -30.809 -15.344 -8.210 -7.736 -50.148 -3.5 0.002 0.220 -8.228
42 -63.741 -30.691 -17.488 -8.037 -7.526 -52.375 -2.8 0.000 0.229 -8.337
86 -65.957 -33.503 -13.920 -9.113 -9.422 -52.968 -4.2 0.337 0.217 -8.235
38 -60.816 -30.079 -15.217 -8.228 -7.292 -49.850 -2.8 0.000 0.232 -7.934
36 -65.347 -27.468 -16.436 -13.402 -8.040 -52.186 -5.6 0.009 0.211 -7.341
61 -66.693 -32.255 -16.328 -9.188 -8.922 -57.164 -2.1 0.095 0.232 -7.102
62 -62.383 -32.050 -14.951 -7.308 -8.074 -53.060 -2.1 0.011 0.205 -7.007

112 -66.885 -28.534 -18.775 -10.903 -8.673 -52.674 -2.8 0.000 0.221 -11.190
107 -71.234 -29.809 -19.204 -13.039 -9.182 -55.760 -3.5 0.481 0.212 -11.280
94 -70.623 -31.090 -19.120 -10.337 -10.077 -57.281 -2.8 0.503 0.221 -9.818
99 -71.455 -31.088 -19.786 -11.791 -8.790 -57.062 -4.2 0.008 0.225 -9.959
92 -65.585 -31.292 -17.110 -8.156 -9.026 -53.362 -2.8 0.000 0.229 -9.195
88 -67.042 -31.065 -16.012 -11.534 -8.431 -52.567 -4.9 0.304 0.221 -9.050
84 -65.343 -31.436 -17.764 -7.298 -8.845 -52.285 -3.5 0.271 0.221 -9.066
75 -64.244 -29.705 -18.437 -8.089 -8.011 -53.174 -2.8 0.000 0.228 -8.042
39 -63.794 -30.690 -16.779 -7.832 -8.494 -52.786 -2.8 0.001 0.228 -7.979
37 -61.087 -30.423 -15.111 -8.154 -7.400 -48.095 -4.2 0.726 0.205 -7.861
a Top, training set; bottom, test set. All values are given in kcal/mol.
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tests (with an average predictive r2 of -0.133; cf. Figure
6, right panel) demonstrated the sensitivity of the
surrogate toward the biological data.

Combination of the Receptor Surrogates. From
a pharmacological point of view, both series of com-
pounds used for this study compete for the same binding
site at the CCR3 chemokine receptor. Consequently, one
needs to probe the spatial matching of the two sur-
rogates, as they were evolved independently from dif-
ferent ligand sets. The reason we did not envision this
firsthand is of “technical” nature: the binding affinities
of series-1 (measured at Brystol-Myers Squibb) are
provided as IC50 values while those of series-2 (obtained
from Boehringer Ingelheim) are Ki values. The Cheng-
Prusoff equation52 allows the conversion of Ki and IC50
for our QSAR study by using A(K) ) 0.15 nM27 and
Kp ) 0.60 nM.52 As the experiments were conducted by
different laboratories, the results should be interpreted
with caution.

As can be seen from Figures 2 and 5, the 3D space
occupied by the ligand molecules of series-2 can be
understood as a subset of the volume defined by the
ligands of series-1, but indicating a possibly significant
amount of induced fit, particularly in the left-lobe region.

Figure 5. Stereorepresentation of the surrogate for the CCR3 receptor (series-1). Color coding cf. caption to Figure 2.

Figure 6. Comparison of experimental and predicted binding affinities for the CCR3 receptor (series-2): correct simulation
(left); scramble test (right).

Figure 7. The four most potent proposed CCR3 antagonists:
Z01 and Z06 (series-1, top panel, left and right, respectively);
X40 and X35 (series-2, bottom panel, left and right, respec-
tively). The given binding affinities represent values predicted
by the receptor models and have not yet been experimentally
verified. The associated standard deviations are moderate and
range from a factor of 0.35 (X40) to a factor of 1.0 (Z01) in the
Ki and IC50 values, respectively.
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As the two models were evolved independently, we
selected the lowest-energy conformers for the pharma-
cophore construction, respectively (cf. above). The ligands
of series-2 can match the volume occupied by those of
series-1 far better, if the torsion angle linking the X
group with the aromatic ring bearing R1 (cf. Chart 1)
is altered from -60° (gauche) to 180° (trans). The
internal strain associated with this change raises by
0.8 to 1.1 kcal/mol, a modest increase which is ap-
propriately considered in the Quasar energy eq 1. The
selection of training and test sets was not altered with
respect to the individual simulations nor were the
boundary conditions of the 5D-QSAR study.

After 8000 crossovers (32 generations), the simulation
reached the cross-validated r2 of 0.907 and a predictive
r2 of 0.899. These quantities reflect values averaged over
the 250 models that, among themselves, differ in 27%
[21-29%] of the mapped 138 properties on 342 available

positions of the surface. The surrogate is depicted in
Figure 8; experimental and calculated IC50 values are
compared in Figure 9. The rms deviation for the 106
ligand molecules of the training set (40 from series-1
and 66 from series-2) is 0.40 kcal/mol (a factor 1.0 off
in the IC50 value); the maximal individual deviation is
1.2 kcal/mol (7.1 off the IC50). Thirty-five compounds (10
+ 25) defined the test set and yielded a predictive r2 of
0.899. On the average, the predicted IC50 value for the
test ligands deviates 0.34 kcal/mol from the experiment
(0.8 off the IC50); the maximal deviation is 0.88 kcal/
mol (3.5 in the IC50).

Novel Compounds. We evaluated a total of 58 novel
molecules and tested them in silico against the two
receptor surrogates. Thereby, two substitution protocols
were applied: (1) lipophilic substituents (-CH3, -CF3,
-F, -Cl, -CtN) increasing hydrophobic interactions
and simultaneously reducing the desolvation energy and

Table 4. Experimental and Calculated Ki Values for Series-2a

ligand conformers
Ki

(exptl)
Ki

(calcd)
factor off

in Ki ligand conformers
Ki

(exptl)
Ki

(calcd)
factor off

in Ki

Training Set (66)
1101 4 5.00 × 10-8 (1.61 ( 0.15) × 10-7 2.2 562 2 1.03 × 10-6 (1.36 ( 0.17) × 10-6 0.3
763 4 6.20 × 10-8 (9.64 ( 1.21) × 10-8 0.6 597 1 1.07 × 10-6 (1.45 ( 0.17) × 10-6 0.4
781 2 8.00 × 10-8 (1.36 ( 0.16) × 10-7 0.7 795 4 1.08 × 10-6 (3.87 ( 0.59) × 10-7 1.8
792 4 1.18 × 10-7 (1.71 ( 0.23) × 10-7 0.5 599 1 1.11 × 10-6 (1.37 ( 0.15) × 10-6 0.2
799 2 1.29 × 10-7 (1.89 ( 0.23) × 10-7 0.5 581 1 1.13 × 10-6 (2.30 ( 0.27) × 10-6 1.0
1076 2 1.79 × 10-7 (2.04 ( 0.29) × 10-7 0.1 689 2 1.20 × 10-6 (7.42 ( 1.07) × 10-7 0.6
790 2 2.24 × 10-7 (1.46 ( 0.15) × 10-7 0.5 595 1 1.31 × 10-6 (1.29 ( 0.22) × 10-6 0.0
785 2 2.31 × 10-7 (5.07 ( 0.69) × 10-7 1.2 576 1 1.46 × 10-6 (2.07 ( 0.40) × 10-6 0.4
1066 1 2.96 × 10-7 (4.88 ( 0.67) × 10-7 0.6 558 2 1.53 × 10-6 (1.04 ( 0.17) × 10-6 0.5
1077 2 3.13 × 10-7 (2.18 ( 0.36) × 10-7 0.4 639 8 1.58 × 10-6 (1.15 ( 0.26) × 10-6 0.4
1079 1 3.16 × 10-7 (5.68 ( 0.77) × 10-7 0.8 659 4 1.67 × 10-6 (8.22 ( 1.33) × 10-7 1.0
1080 1 3.26 × 10-7 (3.61 ( 0.48) × 10-7 0.1 593 2 1.71 × 10-6 (1.28 ( 0.16) × 10-6 0.3
784 4 3.46 × 10-7 (5.66 ( 0.48) × 10-7 0.6 586 2 1.72 × 10-6 (9.73 ( 1.24) × 10-7 0.8
789 2 3.49 × 10-7 (2.65 ( 0.31) × 10-7 0.3 669 4 1.77 × 10-6 (1.86 ( 0.30) × 10-6 0.0
782 2 3.50 × 10-7 (6.77 ( 0.73) × 10-7 0.9 583 2 1.98 × 10-6 (1.58 ( 0.19) × 10-6 0.3
685 4 3.93 × 10-7 (6.48 ( 1.19) × 10-7 0.6 584 1 2.05 × 10-6 (1.00 ( 0.12) × 10-6 1.0
1065 1 4.29 × 10-7 (7.42 ( 1.01) × 10-7 0.7 537 2 3.35 × 10-6 (8.18 ( 1.56) × 10-6 1.4
793 4 4.77 × 10-7 (4.50 ( 0.84) × 10-7 0.1 443 2 3.54 × 10-6 (5.78 ( 1.09) × 10-6 0.6
591 1 4.79 × 10-7 (1.81 ( 0.20) × 10-6 2.8 592 2 3.65 × 10-6 (1.46 ( 0.29) × 10-6 1.5
675 4 4.88 × 10-7 (6.66 ( 0.92) × 10-7 0.4 737 2 4.73 × 10-6 (1.10 ( 0.19) × 10-5 1.3
1085 4 5.17 × 10-7 (1.35 ( 0.14) × 10-7 2.8 578 1 5.39 × 10-6 (6.69 ( 0.87) × 10-6 0.2
796 2 5.45 × 10-7 (6.98 ( 0.81) × 10-7 0.3 601 2 6.00 × 10-6 (9.36 ( 1.90) × 10-6 0.6
652 4 5.97 × 10-7 (8.04 ( 1.16) × 10-7 0.3 580 1 6.36 × 10-6 (5.47 ( 0.66) × 10-6 0.2
753 4 6.29 × 10-7 (3.56 ( 0.37) × 10-7 0.8 517 2 7.75 × 10-6 (5.55 ( 1.07) × 10-6 0.4
676 4 7.68 × 10-7 (8.88 ( 1.30) × 10-7 0.2 637 2 8.85 × 10-6 (6.43 ( 1.16) × 10-6 0.4
794 2 7.82 × 10-7 (7.13 ( 1.20) × 10-7 0.1 547 4 1.05 × 10-5 (2.73 ( 0.44) × 10-6 2.9
797 2 8.95 × 10-7 (5.63 ( 0.81) × 10-7 0.6 707 4 1.17 × 10-5 (6.45 ( 1.06) × 10-6 0.8
552 2 8.97 × 10-7 (1.05 ( 0.21) × 10-6 0.2 484 2 1.48 × 10-5 (5.09 ( 0.85) × 10-6 1.9
557 2 9.10 × 10-7 (9.12 ( 1.17) × 10-7 0.0 710 2 2.18 × 10-5 (1.97 ( 0.25) × 10-5 0.1
760 4 9.14 × 10-7 (5.26 ( 0.68) × 10-7 0.7 632 1 2.69 × 10-5 (2.24 ( 0.33) × 10-5 0.2
758 4 9.29 × 10-7 (7.82 ( 1.50) × 10-7 0.2 621 2 3.49 × 10-5 (4.24 ( 0.83) × 10-5 0.2
585 1 9.72 × 10-7 (1.13 ( 0.19) × 10-6 0.2 609 2 4.02 × 10-5 (2.65 ( 0.37) × 10-5 0.5
570 2 9.87 × 10-7 (8.21 ( 1.39) × 10-7 0.2 635 1 6.25 × 10-5 (5.37 ( 0.97) × 10-5 0.2

Test Set (24)
783 4 2.16 × 10-7 (2.57 ( 0.34) × 10-7 0.2 560 2 2.25 × 10-6 (2.40 ( 0.32) × 10-6 0.1
786 4 3.12 × 10-7 (3.68 ( 0.51) × 10-7 0.2 516 2 3.81 × 10-6 (4.82 ( 1.24) × 10-6 0.3
754 4 3.44 × 10-7 (5.06 ( 1.20) × 10-8 5.8 543 1 5.18 × 10-6 (7.68 ( 2.23) × 10-6 0.5
661 4 4.35 × 10-7 (1.25 ( 0.16) × 10-6 1.9 553 2 5.38 × 10-6 (2.98 ( 0.53) × 10-6 0.8
791 2 4.84 × 10-7 (6.52 ( 0.86) × 10-7 0.3 472 1 5.55 × 10-6 (8.18 ( 1.24) × 10-6 0.5
687 4 6.05 × 10-7 (3.42 ( 0.70) × 10-7 0.8 470 1 8.02 × 10-6 (1.10 ( 0.17) × 10-5 0.4
561 2 8.30 × 10-7 (9.91 ( 1.95) × 10-7 0.2 713 2 8.97 × 10-6 (1.15 ( 0.26) × 10-5 0.3
798 2 8.32 × 10-7 (8.90 ( 1.31) × 10-7 0.1 574 2 9.83 × 10-6 (3.96 ( 0.81) × 10-6 1.5
598 1 9.32 × 10-7 (7.80 ( 1.26) × 10-7 0.2 612 1 1.03 × 10-5 (1.37 ( 0.35) × 10-5 0.3
755 4 1.04 × 10-6 (5.30 ( 0.83) × 10-7 1.0 542 1 1.07 × 10-5 (1.07 ( 0.20) × 10-5 0.0
590 1 1.12 × 10-6 (1.32 ( 0.15) × 10-6 0.2 636 1 1.12 × 10-5 (1.69 ( 0.22) × 10-5 0.5
579 1 1.25 × 10-6 (2.02 ( 0.26) × 10-6 0.6 715 2 1.61 × 10-5 (1.59 ( 0.22) × 10-5 0.0
776 2 1.31 × 10-6 (9.97 ( 1.63) × 10-7 0.3

a The standard deviation of the calculated values is derived from the variation over the 250 models comprising the surrogate family.
The deviation factor is calculated as (Ki,exptl/Ki,calcd) - 1.0 for Ki,exptl/Ki,calcd > 1.0 and (Ki,calcd/Ki exptl) - 1.0 otherwise. All values are given
in M.
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(2) H-bond-accepting moieties (acetate, pyridine, furane,
sulfonamide, lactone, ether, isocoumarine, naphthochi-
none) aimed at strengthening hydrogen-bond interac-
tions but with an only moderate cost in ligand desol-
vation by using acceptor groups slightly amphiphilic in
character.

For series-1, 10 novel ligand molecules were tested
using the receptor surrogate. Their calculated IC50 value
ranges from 0.3 to 16 nM. The two most potent com-
pounds in silico, Z01 (Figure 7, top, left panel) with a
predicted IC50value of 0.3 nM and Z06 (Figure 7, top,
right panel; IC50 ) 0.8 nM) bearing an isocoumarine
group, would seem to represent realistic assessments
of the situation at the true biological receptor as they
ideally combine a H-bond-accepting moiety with a
delocalized, polarizable ring system. Z01 and Z06 differ
solely by their central-ring substitution pattern: a
4-acetamido substituent versus a bridged 3,4-dioxy-
methylene (cf. Figure 7). Other modifications included
a naphthochinone group in place of the isocoumarine
functionality (here, the 4-acetamido substitution at the
central ring yielded an IC50 of 1.6 nM; a 3,4-dioxy-

methylene moiety yielded an IC50 of 3.0 nM), a pyridine
ring (5.3 and 16 nM), 3,5-dichloro (3.1 and 8.4 nM), and
3,5-dimethyl (1.4 and 4.2 nM).

For series-2, the 48 tested molecules yielded calcu-
lated Ki values from 21 nM to 2.5 µM. The most potent
novel ligand X40 (Ki ) 21 nM; Figure 7, bottom, left
panel) bears the very isocoumarine ring as the com-
pounds leading to the highest predicted affinities within
series-1 (Z01 and Z06); additional modifications at the
central aromatic ring (4-CF3, 4-CH3, 4-N(CH3)2) yield
calculated Ki values ranging from 45 to 82 nM. Com-
pound X35 featuring a naphthochinone group still shows
a computed activity within a factor or 2 from the most
potent compound of the training set (Figure 7, bottom,
right panel; Ki ) 99 nM).

Conclusions

In absence of the 3D receptor structure, multidimen-
sional QSAR techniques provide an elegant approach
for the estimation of free energies of ligand binding. The
receptor modeling software Quasar developed at the
Biographics Laboratory 3R is based on 5D-QSAR and
explicitly allows for the simulation of induced fit. To
determine the ligand-receptor interactions, the scoring
function makes use of a directional force field. Free
energies of ligand binding are then derived based on
the ligand-receptor interaction, ligand desolvation,
entropy, as well as terms for internal strain of the ligand
molecule and induced fit.

The Quasar concept has been used for the design of
novel compounds able in silico to inhibit the CCR3
receptor in the low-nanomolar range. For model valida-
tion, we made use of two different series of data
including a total of 141 known CCR3 antagonist mol-
ecules. The simulations yielded a cross-validated r2 of
0.950 and 0.861 (106 training ligands) and predictive
r2 of 0.877 and 0.798 (for 35 test ligands), respectively.
On the basis of the two surrogate families (comprising
250 models each), we evaluated a total of 58 novel
molecules for which various substitution patterns were
applied. Nine of the proposed ligands show a calculated
IC50 < 10 nM (series-1) and Ki < 100 nM (series-2),
respectively. The most potent candidate is expected to
bind with an IC50 of 0.3 nM (series-1) and a Ki of 21 nM
(series-2), respectively. With the possibility to calculate

Figure 8. Stereo representation of the surrogate for the CCR3 receptor (combined series). The mapped properties are colored as
follows: red, positively charged salt bridge (e.g., Arg-Lys); blue, negatively charged salt bridge (e.g., Asp-Glu); green, H-bond
donor; yellow, H-bond acceptor; light brown, positively charged hydrophobic; dark brown, negatively charged hydrophobic; gray,
neutral hydrophobic.

Figure 9. Comparison of experimental and predicted binding
affinities for the CCR3 receptor (combined series).
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the contribution of each functional toward the free
energy of ligand binding, Quasar offers a straightfor-
ward way to identify novel, potent ligand molecules and
to predict their activity close to experimental uncer-
tainty. By merging the two ligand sets, we could validate
the combined model at a high level of confidence (cross-
validated r2 of 0.907, predictive r2 of 0.899).

Information on Quasar may be obtained at http://
www.biograf.ch/software.html and from http://www.
biograf.ch/PDFS/Quasar.pdf (program documentation).
The Biographics Laboratory 3R is a nonprofit organiza-
tion aimed at replacing animal models in biomedical
research by computational technologies (http://www.
biograf.ch).
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